<= Drawing 3D Cube
Couple of years ago I came up with an algorithm of drawing an ellipse using SQL Server spatial geometry: http://slavasql.blogspot.com/2015/02/drawing-ellipse-in-ssms.htmlI've used that algorithm to make a sphere and as in my previous blog of drawing 3D Cube I use external procedure to simplify the process.
This time instead of temporary stored procedure I'm using a function to generate Geometrical content.
Here is the function's code:
SET NOCOUNT ON GO USE tempdb; GO IF OBJECT_ID('tempdb.dbo.Elipse') IS NOT NULL DROP FUNCTION dbo.Elipse GO CREATE FUNCTION dbo.Elipse( @x FLOAT = 0, -- x coordinate of center @y FLOAT = 0, -- y coordinate of center @rh FLOAT = 1, -- Horizontal radius @rv FLOAT = 0, -- Vertical Radius @as FLOAT = 0, -- Starting angle @af FLOAT = 0 -- Finishing angle ) RETURNS GEOMETRY AS BEGIN SELECT @af = CASE @af WHEN 0 THEN 2*Pi() ELSE @af END , @rv = CASE @rv WHEN 0 THEN @rh ELSE @rv END DECLARE @MP VARCHAR(MAX)=''; -- angle that will be increased each loop DECLARE @theta FLOAT = @as; -- amount to add to theta each time (degrees) DECLARE @step FLOAT = 2 * PI()/1000; DECLARE @x1 FLOAT, @y1 FLOAT , @x2 FLOAT = @x + @rh * SIN(@theta) , @y2 FLOAT = @y + @rv * COS(@theta); WHILE @theta <= @af SELECT @x1 = @x2, @y1 = @y2, @x2 = @x + @rh * SIN(@theta), @y2 = @y + @rv * COS(@theta), @theta += @step, @MP = @MP + '(' + CAST(@x1 as VARCHAR) + ' ' + CAST(@y1 as VARCHAR) + ',' + CAST(@x2 as VARCHAR) + ' ' + CAST(@y2 as VARCHAR) + '),'; RETURN (CONVERT(GEOMETRY,'MULTILINESTRING(' + LEFT(@MP,LEN(@MP)-1) + ')')).MakeValid(); END GO
The easiest way to use that function is to run a SELECT statement of it with some parameters:
SELECT tempdb.dbo.Elipse (10, 10, 1, .5, default, default).STBuffer(0.002);
If you decide to not specify the fourth parameter (@rv - Vertical Radius) you'll get a perfect circle!
SELECT tempdb.dbo.Elipse (0,0,1,default,default,default).STBuffer(0.005);If you will specify starting and finishing angles you can get a part of an ellipse like this:
SELECT tempdb.dbo.Elipse (10,10,1,0.5,Pi()/4,5*Pi()/4).STBuffer(0.01);
/* Make sphere with Axial tilt 23.437% */ DECLARE @d FLOAT = RADIANS(23.437), /*Axial tilt*/ @LR FLOAT = Pi()/4, /* Rotation LEft-Right*/ @x FLOAT = 0, /*Coordinate X*/ @y FLOAT = 0, /*Coordinate Y*/ @r FLOAT = 1, /*Radius*/ @w FLOAT = 0.001 /*Line width*/ DECLARE @g TABLE (g GEOMETRY); -- Main circle INSERT INTO @g SELECT tempdb.dbo.Elipse (@x, @y, @r, default, default, default ) -- North Pole INSERT INTO @g SELECT CONVERT(GEOMETRY,'POINT(' +CAST(@x as VARCHAR)+' '+CAST(@y + @r * COS(@d) as VARCHAR) +')').STBuffer(@w) -- Draw Equator: INSERT INTO @g SELECT tempdb.dbo.Elipse (@x, @y, @r, @r * SIN(@d), Pi()/2, 3*Pi()/2) -- Draw 30 degrees north: INSERT INTO @g SELECT tempdb.dbo.Elipse ( @x, @y + @r * COS(Pi()/6)*COS(@d), @r*SIN(Pi()/6), @r * COS(Pi()/6)*COS(@d) - @r * COS(Pi()/6+@d), ACOS( TAN(@d) / TAN(Pi()/6) ) , 2*Pi()-ACOS( TAN(@d) / TAN(Pi()/6) )) -- Draw 60 degrees north: INSERT INTO @g SELECT tempdb.dbo.Elipse ( @x, @y + @r * COS(Pi()/3)*COS(@d), @r*SIN(Pi()/3), @r * COS(Pi()/3)*COS(@d) - @r * COS(Pi()/3+@d), ACOS( TAN(@d) / TAN(Pi()/3) ) , 2*Pi()-ACOS( TAN(@d) / TAN(Pi()/3) ) ) -- Draw 60 degrees South: INSERT INTO @g SELECT tempdb.dbo.Elipse ( @x, @y - @r * COS(Pi()/3)*COS(@d), @r*SIN(Pi()/3), @r * COS(Pi()/3)*COS(@d) - @r * COS(Pi()/3+@d), Pi()-ACOS( TAN(@d) / TAN(Pi()/3) ) , Pi()+ACOS( TAN(@d) / TAN(Pi()/3) ) ) -- Draw 30 degrees south: INSERT INTO @g SELECT tempdb.dbo.Elipse ( @x, @y - @r * COS(Pi()/6)*COS(@d), @r*SIN(Pi()/6), @r * COS(Pi()/6)*COS(@d) - @r * COS(Pi()/6+@d), Pi()-ACOS( TAN(@d) / TAN(Pi()/6) ) , Pi()+ACOS( TAN(@d) / TAN(Pi()/6) )) SELECT g.STBuffer(0.005) FROM @g GO
That sphere is supposed to represent the Earth looking at the Sun at Summer Solstice.
No comments:
Post a Comment